Extensions 1→N→G→Q→1 with N=C2 and Q=C3×C22≀C2

Direct product G=N×Q with N=C2 and Q=C3×C22≀C2
dρLabelID
C6×C22≀C248C6xC2^2wrC2192,1410


Non-split extensions G=N.Q with N=C2 and Q=C3×C22≀C2
extensionφ:Q→Aut NdρLabelID
C2.1(C3×C22≀C2) = C3×C243C4central extension (φ=1)48C2.1(C3xC2^2wrC2)192,812
C2.2(C3×C22≀C2) = C3×C23.8Q8central extension (φ=1)96C2.2(C3xC2^2wrC2)192,818
C2.3(C3×C22≀C2) = C3×C23.23D4central extension (φ=1)96C2.3(C3xC2^2wrC2)192,819
C2.4(C3×C22≀C2) = C3×C232D4central stem extension (φ=1)96C2.4(C3xC2^2wrC2)192,825
C2.5(C3×C22≀C2) = C3×C23⋊Q8central stem extension (φ=1)96C2.5(C3xC2^2wrC2)192,826
C2.6(C3×C22≀C2) = C3×C23.10D4central stem extension (φ=1)96C2.6(C3xC2^2wrC2)192,827
C2.7(C3×C22≀C2) = C3×C23.78C23central stem extension (φ=1)192C2.7(C3xC2^2wrC2)192,828
C2.8(C3×C22≀C2) = C3×C22⋊D8central stem extension (φ=1)48C2.8(C3xC2^2wrC2)192,880
C2.9(C3×C22≀C2) = C3×Q8⋊D4central stem extension (φ=1)96C2.9(C3xC2^2wrC2)192,881
C2.10(C3×C22≀C2) = C3×D4⋊D4central stem extension (φ=1)96C2.10(C3xC2^2wrC2)192,882
C2.11(C3×C22≀C2) = C3×C22⋊SD16central stem extension (φ=1)48C2.11(C3xC2^2wrC2)192,883
C2.12(C3×C22≀C2) = C3×C22⋊Q16central stem extension (φ=1)96C2.12(C3xC2^2wrC2)192,884
C2.13(C3×C22≀C2) = C3×D4.7D4central stem extension (φ=1)96C2.13(C3xC2^2wrC2)192,885
C2.14(C3×C22≀C2) = C3×D44D4central stem extension (φ=1)244C2.14(C3xC2^2wrC2)192,886
C2.15(C3×C22≀C2) = C3×D4.8D4central stem extension (φ=1)484C2.15(C3xC2^2wrC2)192,887
C2.16(C3×C22≀C2) = C3×D4.9D4central stem extension (φ=1)484C2.16(C3xC2^2wrC2)192,888
C2.17(C3×C22≀C2) = C3×D4.10D4central stem extension (φ=1)484C2.17(C3xC2^2wrC2)192,889
C2.18(C3×C22≀C2) = C3×C2≀C22central stem extension (φ=1)244C2.18(C3xC2^2wrC2)192,890
C2.19(C3×C22≀C2) = C3×C23.7D4central stem extension (φ=1)484C2.19(C3xC2^2wrC2)192,891

׿
×
𝔽